๐Ÿ“˜ Amazon Bedrock โ€“ Pricing & Model Improvement

1๏ธโƒฃ Pricing Options

๐Ÿ”น On-Demand (์ฆ‰์‹œ ์‚ฌ์šฉ, ์‚ฌ์šฉ๋Ÿ‰๋งŒํผ ๊ฒฐ์ œ)

  • ๋ฐฉ์‹: ์ „๊ธฐ์š”๊ธˆ์ฒ˜๋Ÿผ ์“ด ๋งŒํผ๋งŒ ์ง€๋ถˆ (Pay-as-you-go)
  • ์š”๊ธˆ ๊ธฐ์ค€
    • ํ…์ŠคํŠธ ๋ชจ๋ธ โ†’ ์ž…๋ ฅ/์ถœ๋ ฅ ํ† ํฐ ์ˆ˜
    • ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ โ†’ ์ž…๋ ฅ ํ† ํฐ ์ˆ˜
    • ์ด๋ฏธ์ง€ ๋ชจ๋ธ โ†’ ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€ ์ˆ˜
  • ์‚ฌ์šฉ ๊ฐ€๋Šฅ ๋ชจ๋ธ: Base Models ์ „์šฉ
  • โœ… ์žฅ์ : ์œ ์—ฐ์„ฑ, ์‚ฌ์šฉ๋Ÿ‰ ์˜ˆ์ธก์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ ์ ํ•ฉ
  • โŒ ๋‹จ์ : ์žฅ๊ธฐ๊ฐ„ ์‚ฌ์šฉ ์‹œ ๋น„์šฉ ๋ถ€๋‹ด โ†‘

๐Ÿ”น Batch Mode (๋ฌถ์Œ ์ฒ˜๋ฆฌ, ์ตœ๋Œ€ 50% ํ• ์ธ)

  • ๋ฐฉ์‹: ์—ฌ๋Ÿฌ ์š”์ฒญ์„ ํ•œ ๋ฒˆ์— ๋ฌถ์–ด์„œ ์ฒ˜๋ฆฌ โ†’ ๊ฒฐ๊ณผ๋Š” Amazon S3์— ๋‹จ์ผ ํŒŒ์ผ ์ €์žฅ
  • ํ• ์ธ ํ˜œํƒ: ์ตœ๋Œ€ 50% ์ €๋ ด
  • โœ… ์žฅ์ : ๋Œ€๋Ÿ‰ ์ฒ˜๋ฆฌ์— ์œ ๋ฆฌ, ๋น„์šฉ ์ ˆ๊ฐ ํšจ๊ณผ ํผ
  • โŒ ๋‹จ์ : ์‹ค์‹œ๊ฐ„ ์‘๋‹ต ๋ถˆ๊ฐ€, ๊ฒฐ๊ณผ ์ง€์—ฐ ๋ฐœ์ƒ
  • ์ ํ•ฉ ์ƒํ™ฉ: ์ฆ‰๊ฐ์ ์ธ ์‘๋‹ต ํ•„์š” ์—†๊ณ , ๋Œ€๋Ÿ‰ ์š”์ฒญ์„ ์ฒ˜๋ฆฌํ•  ๋•Œ

๐Ÿ”น Provisioned Throughput (์˜ˆ์•ฝ์ œ, ์•ˆ์ •์  ์„ฑ๋Šฅ ๋ณด์žฅ)

  • ๋ฐฉ์‹: ํ—ฌ์Šค์žฅ ์ •์•ก์ œ์ฒ˜๋Ÿผ ์ผ์ • ๊ธฐ๊ฐ„(1~6๊ฐœ์›” ๋“ฑ) ์ฒ˜๋ฆฌ ์šฉ๋Ÿ‰ ์˜ˆ์•ฝ
  • ๋ณด์žฅ ์„ฑ๋Šฅ: ๋ถ„๋‹น ์ตœ๋Œ€ ์ž…๋ ฅ/์ถœ๋ ฅ ํ† ํฐ ์ˆ˜ ๋ณด์žฅ
  • ์‚ฌ์šฉ ๊ฐ€๋Šฅ ๋ชจ๋ธ: Base, Fine-tuned, Custom Models
  • โœ… ์žฅ์ : ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ ๋ฐ ์šฉ๋Ÿ‰ ํ™•๋ณด, ์ปค์Šคํ…€ ๋ชจ๋ธ ์‚ฌ์šฉ ๊ฐ€๋Šฅ
  • โŒ ๋‹จ์ : ๋น„์šฉ ์ ˆ๊ฐ ํšจ๊ณผ๋Š” ๊ฑฐ์˜ ์—†์Œ โ†’ ๋ชฉ์ ์€ โ€œ์„ฑ๋Šฅ ๋ณด์žฅโ€

๐Ÿ“Š ๊ฐ€๊ฒฉ ์˜ต์…˜ ๋น„๊ตํ‘œ

์˜ต์…˜ ๊ฒฐ์ œ ๋ฐฉ์‹ ์š”๊ธˆ ๊ธฐ์ค€ ์‚ฌ์šฉ ๊ฐ€๋Šฅ ๋ชจ๋ธ ์žฅ์  ๋‹จ์  ์ ํ•ฉํ•œ ๊ฒฝ์šฐ
On-Demand ์‚ฌ์šฉํ•œ ๋งŒํผ ๊ฒฐ์ œ - ํ…์ŠคํŠธ: ์ž…๋ ฅ/์ถœ๋ ฅ ํ† ํฐ
- ์ž„๋ฒ ๋”ฉ: ์ž…๋ ฅ ํ† ํฐ
- ์ด๋ฏธ์ง€: ์ƒ์„ฑ ์ˆ˜
Base Models ์ „์šฉ ์œ ์—ฐ์„ฑ โ†‘
์˜ˆ์ธก ๋ถˆ๊ฐ€ ์›Œํฌ๋กœ๋“œ ์ ํ•ฉ
์žฅ๊ธฐ ์‚ฌ์šฉ ์‹œ ๋น„์šฉ โ†‘ ๊ฐ€๋” ์‚ฌ์šฉ / ์‚ฌ์šฉ๋Ÿ‰ ์˜ˆ์ธก ์–ด๋ ค์›€
Batch Mode ์—ฌ๋Ÿฌ ์š”์ฒญ ๋ฌถ์Œ ์ฒ˜๋ฆฌ ๊ฒฐ๊ณผ Amazon S3์— ์ €์žฅ Base Models ์ „์šฉ ์ตœ๋Œ€ 50% ํ• ์ธ
๋Œ€๋Ÿ‰ ์ฒ˜๋ฆฌ ์œ ๋ฆฌ
์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ๋ถˆ๊ฐ€
์ง€์—ฐ ๋ฐœ์ƒ
๋Œ€๋Ÿ‰ ์š”์ฒญ / ์ฆ‰๊ฐ ์‘๋‹ต ๋ถˆํ•„์š”
Provisioned Throughput ์ผ์ • ๊ธฐ๊ฐ„ ์šฉ๋Ÿ‰ ์˜ˆ์•ฝ ๋ถ„๋‹น ํ† ํฐ ์ฒ˜๋ฆฌ๋Ÿ‰ ๋ณด์žฅ Base, Fine-tuned, Custom Models ์•ˆ์ •์  ์„ฑ๋Šฅ ๋ณด์žฅ
์ปค์Šคํ…€ ๋ชจ๋ธ ๊ฐ€๋Šฅ
๋น„์šฉ ์ ˆ์•ฝ ํšจ๊ณผ ๊ฑฐ์˜ ์—†์Œ ์ปค์Šคํ…€ ๋ชจ๋ธ / ์„ฑ๋Šฅ ๋ณด์žฅ ํ•„์š”

2๏ธโƒฃ Model Improvement Techniques (์ €๋น„์šฉ โ†’ ๊ณ ๋น„์šฉ)

1. Prompt Engineering

  • ํ”„๋กฌํ”„ํŠธ ์„ค๊ณ„ ์ตœ์ ํ™”๋งŒ์œผ๋กœ ๊ฐœ์„ 
  • ์ถ”๊ฐ€ ์—ฐ์‚ฐ ์—†์Œ โ†’ ๊ฐ€์žฅ ์ €๋ ด

2. Retrieval Augmented Generation (RAG)

  • ์™ธ๋ถ€ ์ง€์‹ DB(Vector DB) ํ™œ์šฉ
  • ๋ชจ๋ธ ์žฌํ•™์Šต ์—†์Œ โ†’ ๋น„์šฉ ์ ์Œ
  • ๋‹จ, ๋ฒกํ„ฐ DB ๊ตฌ์ถ•ยท์šด์˜ ๋น„์šฉ ๋ฐœ์ƒ

RAG = โ€œ๋ชจ๋ธ + ๊ฒ€์ƒ‰๊ธฐ๋Šฅโ€ โ†’ ๋ชจ๋ธ์ด ๋ชจ๋ฅด๋Š” ๊ฒƒ๋„ ์™ธ๋ถ€์—์„œ ์ฐพ์•„์„œ ๋˜‘๋˜‘ํ•˜๊ฒŒ ๋‹ตํ•˜๋Š” ๋ฐฉ๋ฒ•์ด์—์š”.

3. Instruction-based Fine-tuning

  • ๋ผ๋ฒจ๋ง๋œ ๋ฐ์ดํ„ฐ๋กœ ๋ชจ๋ธ์„ ํŠน์ • ์ง€์นจ์— ๋งž๊ฒŒ ์กฐ์ •
  • ์ถ”๊ฐ€ ์—ฐ์‚ฐ ํ•„์š” โ†’ ๋น„์šฉ ์ฆ๊ฐ€

4. Domain Adaptation Fine-tuning

  • ๋„๋ฉ”์ธ ํŠนํ™” ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ๋Œ€๊ทœ๋ชจ ์žฌํ•™์Šต
  • ๋ฐ์ดํ„ฐ ์ค€๋น„ + ์—ฐ์‚ฐ ์ง‘์•ฝ์  โ†’ ๊ฐ€์žฅ ๋น„์šฉ ๋†’์Œ

3๏ธโƒฃ Cost Optimization Tips

  • ํ† ํฐ ์ˆ˜ ๊ด€๋ฆฌ โ†’ ๋น„์šฉ ์ ˆ๊ฐ์˜ ํ•ต์‹ฌ
    • ํ”„๋กฌํ”„ํŠธ๋Š” ์งง๊ณ  ๊ฐ„๊ฒฐํ•˜๊ฒŒ
    • ์ถœ๋ ฅ๋„ ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๊ธธ์ง€ ์•Š๊ฒŒ
  • Batch Mode ํ™œ์šฉ โ†’ ์ตœ๋Œ€ 50% ์ ˆ๊ฐ
  • ์ž‘์€ ๋ชจ๋ธ ์„ ํƒ โ†’ ์ผ๋ฐ˜์ ์œผ๋กœ ๋” ์ €๋ ด
  • ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ(Temperature, Top-K, Top-P) ์กฐ์ •
    • ์„ฑ๋Šฅ์—๋Š” ์˜ํ–ฅ ์ฃผ์ง€๋งŒ ๋น„์šฉ์—๋Š” ์˜ํ–ฅ ์—†์Œ

๐Ÿ“ ์ตœ์ข… ์ •๋ฆฌ (์‹œํ—˜/์‹ค๋ฌด ํฌ์ธํŠธ)

  • On-Demand = ์œ ์—ฐ์„ฑ / Batch = ๋Œ€๋Ÿ‰ยทํ• ์ธ / Provisioned = ์„ฑ๋Šฅ ๋ณด์žฅ
  • ๋น„์šฉ ์ˆœ์„œ: Prompt Engineering < RAG < Instruction Fine-tuning < Domain Adaptation
  • ๋น„์šฉ ์ ˆ๊ฐ ํ•ต์‹ฌ: ํ† ํฐ ์ˆ˜ ๊ด€๋ฆฌ + Batch ํ™œ์šฉ